"Революция в медицине". Создан прототип лекарств будущего

"Революция в медицине". Создан прототип лекарств будущего
МОСКВА, 31 окт — РИА Новости, Владислав Стрекопытов. Биохимики из Дании и США получили устойчивые ДНК-пептидные наноструктуры, из которых в перспективе планируют собирать искусственные микроорганизмы. Главное их предназначение — защищать человека от опасных вирусов. О достижениях в этой сфере — в материале РИА Новости.На пути к созданию искусственных организмовРасшифровка структуры ДНК в середине прошлого века стала одним из поворотных моментов в истории биологии. После этого ученые сосредоточили усилия на разработке методов модификации ДНК и редактирования. Сегодня в лабораториях создают аналоги сложных биомолекул, которые используют в том числе для диагностики и лечения заболеваний.Активно развивается и совершенно новое направление в науке, связанное с искусственной жизнью. Речь, конечно, не о лабораторных монстрах из фантастических фильмов, а о химическом синтезе молекул ДНК и сборке из них клеточных наноструктур, а в будущем — и целых дизайнерских организмов. Одно из возможных применений — изготовление «живых» антивирусов.Лекарства будущегоПрирода устроена так, что практически у каждого организма есть естественные враги. Это позволяет поддерживать видовой баланс в экосистемах. Исключение — некоторые вирусы. Не встречая препятствий, они периодически начинают бесконтрольно размножаться, вызывая эпидемии. Для предотвращения этого ученые предлагают создать искусственные организмы, враждебные вирусам.Возможно, когда-нибудь, вместо того чтобы глотать лекарства при каждой инфекции, в организм введут адаптируемый «живой» антивирус, который устранит патогены самостоятельно или в сотрудничестве с иммунной системой.По мнению ученых, собранные из сложных биомолекул конструкции смогут также выполнять роль нанороботов для таргетной доставки препаратов или маркеров при медицинских исследованиях, диагностике, лечении рака и других опасных заболеваний.Новое поколение нанотехнологийЭксперты считают, что первые «живые» вакцины появятся лет через десять. Ближайшая же задача — создать структуры с определенным набором функций клеток, но из синтезированных компонентов.Первый шаг уже сделан. В прошлом году ученые под руководством доцента кафедры физики, химии и фармации Университета Южной Дании Ченгуан Лу и профессора Ханбин Мао из Кентского государственного университета в штате Огайо сообщили о получении сложного органического соединения. Свою супермолекулу они описывают как конъюгат (слияние) ДНК и пептидов — цепочек аминокислот, из которых состоят белки.«Объединение эти двух видов веществ дало мощный молекулярный инструмент, относящийся к новому поколению нанотехнологий», — приводятся в пресс-релизе слова доктора Лу.По мнению исследователей, эти гибридные соединения вполне способны служить строительными блоками для более совершенных наноструктур.CC BY 4.0 / Mathias Bogetoft Danielsen / Гибридные ДНК-пептидные наноструктурыCC BY 4.0 / Mathias Bogetoft Danielsen / Соединив левое и правоеСчитается, что некий процесс, в котором участвовали нуклеиновые кислоты (строительные блоки ДНК) и пептиды (цепочки аминокислот), привел в свое время к образованию первой живой клетки на Земле. Эти две группы биомолекул и сейчас контролируют практически все биохимические реакции. Вместе они составляют основу так называемых белковых фабрик.Чтобы контролировать внутриклеточные процессы, ученые разрабатывают технологии модификации биомолекул. При программировании ДНК обычно оперируют четырьмя главными элементами — нуклеотидами A, C, G и T. Пептидная технология более гибкая, так как позволяет работать с 20 аминокислотами. Соединить эти два инструмента — давняя мечта исследователей.Однако получить подобные супермолекулы, способные одновременно нести генетическую информацию и выполнять в клетках роль белков, долго не удавалось из-за проблемы хиральности. Все молекулы ДНК правосторонние, а пептиды — левосторонние, поэтому в природе они не соединяются.И вот сейчас впервые синтезировали в лаборатории правосторонний пептид, показав, что после изменения хиральности пептиды могут вступать во взаимодействия с ДНК, образуя гибриды, превосходящие по набору биохимических функций любые природные аналоги.Сверхспособности супермолекулНа гибридные супермолекулы возлагают большие надежды. Крошечные биоботы, собранные из конъюгатов, можно закодировать на решение множества конкретных медицинских задач, в том числе таргетную доставку лекарств или стимуляцию иммунной системы. Но прежде всего это потенциальные «живые» вакцины, способные справиться с самыми страшными вирусами, так как ДНК-пептидные наносборки адаптируются как к конкретным патогенам, так и к индивидуальным особенностям организма.Также возможно создание искусственных белков, более устойчивых, чем натуральные, к воздействию тепла, ультрафиолета и химических реагентов, а значит, более стабильных. Не исключено, что подобные соединения послужат основой препаратов нового поколения для лечения многих серьезных заболеваний, в частности болезни Альцгеймера, вызываемой нарушениями в структуре определенных белков.«Это будет революция в медицине», — заключает Ченгуан Лу.Кирпичики искусственной жизниГибридными бионаноматериалами занимаются в разных странах. Британские ученые из Оксфордского университета, например, разработали ДНК-пептидного нанобота, который проникает сквозь клеточную мембрану, проделывая искусственный канал для доставки препаратов и диагностических маркеров.Биохимики из Университета штата Аризона в США, связав модифицированные пептиды и ДНК, получили цепочечные биомолекулярные 3D-структуры микрометровой длины. И продемонстрировали, что режим самосборки подобных соединений можно программировать.Исследователи из Северо-Западного университета в Иллинойсе создали искусственные материалы со схожими свойствами, поместив нити ДНК в пептидный гидрогель, который применяют как имитатор внеклеточного матрикса для культивируемых клеточных культур. После добавления цепочек ДНК мицеллы коллоидного раствора самоорганизавались в иерархические структуры из биоволокон. Самое удивительное, что процесс оказался обратимым.А израильские ученые из Университета Бен-Гуриона выяснили, что при увеличении концентрации нуклеиновых кислот в пептидном растворе волокнистые наноструктуры сменяются стабильными сферическими конъюгатам, которые еще больше подходят на роль кирпичиков искусственной жизни.© Иллюстрация РИА НовостиСмена волокнистых ДНК-пептидных структур сферическими по мере роста концентрации нуклеиновых кислот© Иллюстрация РИА НовостиСмена волокнистых ДНК-пептидных структур сферическими по мере роста концентрации нуклеиновых кислот
Нравится
Не нравится
13:22
RSS
Нет комментариев. Ваш будет первым!
Загрузка...
На развитие сайта и покупку дополнений и информации. В дальнейшем будет в бесплатном доступе. Кто поддержит проект получит Vip доступ на срок Donate
Собрано 0% / 0 из 5000